

Gerard Pasma

Commercial Manager Evaporator Specialist

>25 years at Tetra Pak (previously Stork)

High Quality Concentration Process

Dairy Products: skim milk & whey permeate

Agenda

- ► Concentration of Dairy products with Filtration and Falling Film Evaporation Technology
- ► How to ensure best concentrate quality
 - Skim Milk Concentrate
 - Whey permeate concentrate
- **▶** Sustainability

Concentration of Dairy Products Tetra Pak Filtration Technology

Concentration of Dairy Products using Filtration Technology

Membrane filtration is a technology that separates a liquid into two streams using a semi-permeable membrane.

A difference in pressure forces the components that are smaller than the membrane pores through the membrane as "permeate". The remaining components are retained as "retentate".

Concentration of Dairy Products Tetra Pak Falling Film Evaporation Technology

Concentration of Dairy Products using Falling Film Evaporation Technology

Direct Heaters & Indirect Heaters

Tetra Pak® Evaporator MVR

Skim Milk concentrate quality

Skim Milk Concentration

Concentration from 9%TS to high solids feeding a Spray Dryer

Concentrate quality	WPNI	Typical heat treatment	Concentrate solids	Typical concentrate quality
Low Heat (LH)	>6	75°C & 20 sec holding	50-51%TS	Insolubility Index: <0.2
Medium Heat (MH)	1.5 - 6	80-100°C & 30-60 sec	49-50%TS	Bacterial count: no increase in spores apart from concentration factor (in case
High Heat (HH)	<1.5	105-110°C & 120-180 sec holding	48-49%TS	of HHHS, the spore count will be <10cfu/ml)
High Heat Heat Stable (HHHS)	<1 & specific oil bath test	120-125°C & 180 sec holding	48%TS	Scorched particles: A (7.5) AMERICAN Dairy Products INSTITUTE* SCO STANDARD

Reverse Osmosis (RO) can be used before evaporator as pre-concentrator.

Tetra Pak has references where RO pre-concentrates to 15-30%TS.

C - 22.5 mg

D - 32.5 mg

50 mL

7 CFR 58.2676

A - 7.5 mg

(see reverse for care and use instructions)

2023 version

What if the skim milk concentrate quality deviates?

Evaporator area	Likely cause	Potential remedial actions		
Scorched particles	Fouling inside evaporator	Plan regular inspections		
Insolubility Index	Fouling inside evaporator	Identify fouling areasMake an action plan with a specialist to fix it		
Bacterial spore counts	Product feed quality	Plan regular inspectionsPlan concentrate sampling		
	CIP cleanliness	per area		
	Evaporator process allows for spores to grow/develop	 Make an action plan with a specialist to fix it 		

Mastering the boiling process

Falling Film behavior inside the boiling tubes

Low Milk solids

High milk solids

Sweet Whey Permeate concentrate quality

Sweet Whey Permeate Concentration

Concentration from low solids to 18-20%TS typically with RO or NF Concentration to ~60-68%TS with Falling Film Evaporator

Concentrate quality	Typical heat treatment	Concentrate solids	Typical concentrate quality	50 mL
Sweet whey permeate	80°C	60-68% TS After flash cooling	Crystals: Avoid lactose crystallization inside the evaporator Bacterial count: no increase in spores apart from concentration factor	20 10 8 6
			Scorched particles: A (7.5)	2 1
			ADPI Dairy Products INSTITUTE	SCORCHED PARTICS STANDARDS FOR DRY MILE

7 CFR 58.2676 (see reverse for care and use instructions) 2023 version

What if the sweet whey permeate concentrate quality deviates?

	Likely cause	Potential remedial actions
Scorched particles	Fouling inside evaporator	Plan regular inspections
Insolubility Index	Fouling inside evaporator	 Identify fouling areas (except calcium fouling) Make an action plan with a specialist to fix it
Bacterial spore	Product feed quality	Plan regular inspections
counts	CIP cleanliness of RO/NF and evaporator	Plan concentrate sampling per areaMake an action plan
	Evaporator process allows for spores to grow/develop	with a specialist to fix it

Whey permeate evaporator + flash cooler + crystallization

Sustainability Filtration vs Falling Film Evaporation

Skim Milk Concentration (9-50%TS)

Sustainability journey

Period	TVR Evaporator (steam usage)	MVR Evaporator (electricity usage)	Filtration (RO)	Heat pump usage	Typical Steam and Electricity consumption (WE = water evaporated)
1960 – 1985	9-50%TS		-	-	0.2 - 0.3 Ton steam/Ton WE 2 kW/Ton WE
1985 – 2005	36-50%TS	9-36%TS	-	-	0.1 Ton steam/Ton WE 15 kW/Ton WE
2005 – 2015	-	9-50%TS	-	-	0.02 Ton steam/Ton WE 20 kW/Ton WE
2015 – 2020	-	18-50%TS	9-18%TS	-	0.02 Ton steam / Ton WE 15 kW/Ton WE
2020 – 2025	-	30-50%TS	9-30%TS	Providing hot water, chilled water and/or steam	0 steam usage 25 kW/Ton WE

Whey Permeate Concentration (5-60%TS

Sustainability journey

Period	TVR Evaporator (steam usage)	MVR Evaporator (electricity usage)	Filtration (RO)	Heat pump usage	Typical Steam and Electricty consumption (WE = water evaporated)
1990 – 2000	5-60%TS		-	-	0.2 - 0.3 Ton steam/Ton WE 2 kW/Ton WE
2000 – 2010	30-60%TS	5-30%TS	-	-	0.1 Ton steam/Ton WE 15 kW/Ton WE
2010 – 2015	40-60%TS	15-40%TS	5 -15 %TS	-	0.02 Ton steam/Ton WE 25 kW/Ton WE
2015 – 2020	-	18-60%TS	9-18%TS	-	0.02 Ton steam / Ton WE 20 kW/Ton WE
2020 – 2025	-	18-60%TS	9-18%TS	Providing hot water, chilled water and/or steam	0 steam usage 30 kW/Ton WE

Tetra Pak contact

Evert Faber

Process Sales Manager at Tetra Pak Netherlands

evert.faber@tetrapak.com